yupana-es

23 Nov 2025
by ignat

Objetivos del juego:

 

Introducir el calendario estelar.

Enseñar el uso del alfabeto Tifinag para representar estrellas y animales, y aprender a leer las runas de las armas, escritas con las runas más antiguas.

Introducir la práctica del cálculo de estructuras arquitectónicas en la  Cultura de Sintashta de los indoiraníes (germánico-iraníes) del tercer y segundo milenio a. C.

Enseñar los métodos de conteo de los antiguos sumerios e Sapa Inca de forma lúdica.

Impartir conocimientos básicos sobre la escritura de poesía antigua, incluyendo los códigos necesarios para evitar errores de copia o falsificación.

Introducir los numerales utilizados por los indios mochicos, los egipcios y los indígenas de la península de Yucatán.

 

 

Plan de juego:

Primer año de estudio.

  1. Exhibir el plano circular de Chislobog.
    1. Explicar el contenido del plano circular de Chislobog.
    2. Exhibir la escritura Libia antigua.
    3. Muestra la conexión entre los nombres de animales y constelaciones, y el antiguo alfabeto libio.
    4. Analiza los ciclos del movimiento planetario y sus armónicos.
  2. Describe las imágenes en las tarjetas de juego.
  3. Cuenta las líneas 1, 2 y 3.
  4. Números triangulares.
  5. Analiza el símplex (tetráder), el hipercubo (cubo) y el ortóplex (octáder).

 

Segundo año.

  1. Cuenta la línea 4. Números tetraédricos y piramidales.
    1. Banda de Möbius
    2. Botella de Klein y silbato de agua
    3. Número cuadrado
    4. Número pentagonal y su relación con los estilos cuadrado, triangular y gótico
    5. Número octogonal y su relación con la arquitectura cuadrada, triangular y románica
    6. Número pirmidal triangular
    7. Número pirmidal cuadrado
  2. Calcula la quinta línea del Numero pentatopico y su relación con el Número pentagonal
    1. Número pirmidal pentagonal
    2. Tetridro,  Tensegridad, antiprisma cuadrado torcido, hexeracto (Hexeracto, 6-ortoplex)
    3. Relación de los números pentatópicos con el ADN (en Bioquímica, los números pentatópicos representan el número de posibles ordenamientos de n Subunidad proteicas diferentes en una proteína tetraédrica)
    4. Cifrado
  3. Calcula los cuadrados de los números

Tercer año.

  1. Construye cubos de números
  2. Muestra la pirámide 100
  3. La suma de números cuadrados y triangulares da como resultado un número pentagonal.
    1. Dos de cada tres números pentapolares (no divisibles por 3) son pentagonales.
  4. Contando hipercubos
  5. Ortoplexos
  6. Biprismas (Corte de diamante)
    1. Hexadecacoron (4 dimensiones –Politopo de cruce)
    2. Rombicuboctaedro
    3. 5-orthoplexos
    4. 6-orthoplexos
  7. Multiplicación en palitos
  8. Ecuaciones binomiales de órdenes 1-4: aprendiendo a usar la yupana
  9. Pentagrama 666
    1. 666 es el 36.º número triangular y es igual a la suma de 36 números naturales.
    2. 666 es la suma de los cuadrados de dos números triangulares consecutivos: 15 al cuadrado y 21 al cuadrado.
    3. Pero el cuadrado de estos números se calcula mediante la suma de 15, un número triangular igual a 120, y 14, un número triangular igual a 105, y 21 (231) y 20 (210).

Cuarto año de estudio

  1. Poesía, Tocapu, Quipu, Suma de comprobación
  2. Verso del Shree Brahma Samhita 5.
    1. Chа Tу R Аsh Rа М  Та Т Pа Rу Та H Sh Wе Dа Pак Кhi Аm
  3. Tenere se ha convertido en una montaña de espinas
    1. TeNeRe TaQQaL eN Ghar Ghar Wa N – FiSSaR
    2. El Tenere se ha convertido en una montaña de thorhs
    3. TNR TAQQLN FiSAR
  4. Tejido, encaje numérico.

 

 

Minecraft Edu © 2025